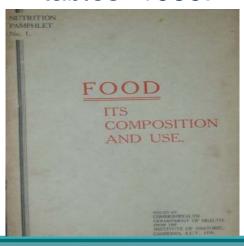


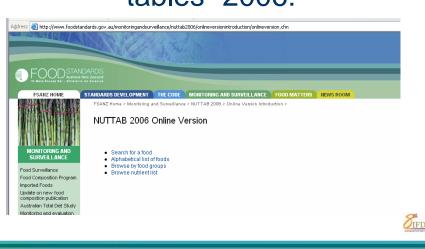
Food composition databases for nutrition labelling: experience from Australia

Dr Judy Cunningham
Food Standards Australia New Zealand

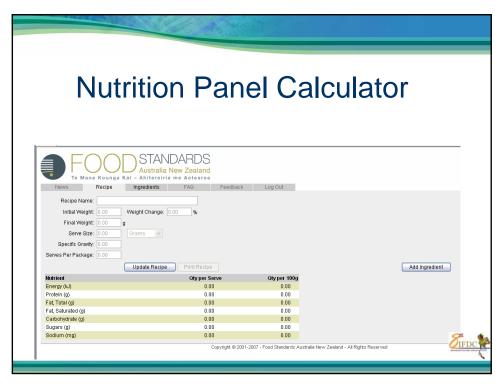
Food Standards Australia New Zealand


We set standards for the composition & labelling of foods supplied in Australia and New Zealand

8th International Food Data Conference



Australian food composition tables -1939:



Australian food composition tables -2006:

8th International Food Data Conference

Outline of presentation

- Consider why we have nutrition labelling
- •Discuss how food composition databases can be used for nutrition labelling
- •Draw on the Australian experience with these databases
- •Identify problem areas
- •Use an example of potato crisps

8th International Food Data Conference

Purpose of nutrition labelling

- "providing the consumer with information so that a wise choice of food can be made"
- •"ensure that nutrition labelling does not describe a product or present information about it which is in any false, misleading, deceptive or insignificant"

Codex Guidelines on Nutrition Labelling CAC/GL 2-1985

Why prepare a labelling database?

- 1. As an alternative to direct analysis (but not permitted in some countries)
- 2. To provide guidance on when nutrients will be present at insignificant levels
- 3. To provide guidance on when a formulation change will affect nutrient levels
- 4. To assist with validation of analytical results
- 5. To assist with exports from your country

8th International Food Data Conference

Features of a labelling database

- Purpose of a database determines its features
- •Includes trade level ingredients
- Individual ingredients not mixed foods
- Only covers nutrients required on labels
- No missing nutrient values
- Data should be high quality

Steps in preparing a database

Understand the legal requirements for your country:

- >Nutrients to be included
- ➤ Definitions of nutrients:
 - energy what factors are used?
 - > carbohydrates sugar alcohols? by difference or by analysis?
 - ➤ Units e.g. Calories or kilojoules?

Is it for export foods or only domestic foods?

8th International Food Data Conference

Steps in preparing a database

Understand food production in your country:

- ➤ Major ingredients used (e.g. oils, starches)
- ➤ Common foods sold in your country
- Categories of foods where greater focus is required

Steps in preparing a database

Prepare your data:

- •Update critical nutrient values, e.g. sodium, saturated fat
- Include food additives with their number
- •Names used include local and trade names

8th International Food Data Conference

Other data you need to provide

A food composition database needs more than nutrient data:

- Weight change factors
- Nutrient retention factors
- •Measures (e.g. Mass of 1 cup, 1 spoon)
- Density
- •Edible portion information
- •Simple and clear guidance for users

Problems in using nutrition databases

- Not suitable for all types of processing, including deep frying, salting, brining and fermenting,
 - ➤unless users have high level skills
- Not recommended if making a specific nutrition claim
 - > "reduced sodium", "low fat"

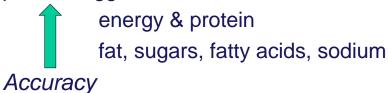
8th International Food Data Conference

October 1-3, 2009

Problems in using nutrition databases: vitamins

- Greatest challenge for accurate labelling
- •Difficult to develop reliable values due to processing and storage losses
- No retention factors for some modern processes
- Direct analysis can be difficult & expensive
- Some vitamins are also food additives

User Issues


- •Users may not be skilled
- May not understand laboratory reports
- •A calculation tool is very useful for this
 - >Automates rounding
 - > Deals with zero or less than values
 - ➤ Presents data in required format
- •Still need to provide user support

Are the results reliable?

- We don't know how nutrition data prepared with a database compare to data generated by analysis
- •Limited research on accuracy of nutrition panels suggests:

Reliability of mandatory values

Nutrient	% accurate
Energy	>90
Protein	80 - 95
Fat, total	60 - 85
Sugars	60 - 85
Saturated fat	65 - 90
Sodium	70 - 80

SIFDC

8th International Food Data Conference

From Fabiansson (2006)

Reliability of micronutrient data

Nutrient	% accurate
Vitamin A	27
Vitamin C	28
Vitamin D	33
Folic acid	45
Calcium & iron	50

New Zealand Food Safety Authority, 2006-2009

8th International Food Data Conference

Ingredient information

Potatoes, vegetable oil (Palmolein, sunflower &/or canola oils), food acids (262, 330), salt, rice flour, sugar, flavour enhancer (621), dextrose, spice extracts, lactose

NUTRITION INFORMATION

Servings per package: 5.00 Serving size: 25.00 g

	Average Quantity Serving	per Quantity pe	r
Energy	419 k J	1680 kJ	
Protein	1.0 g	4.2 g	
Fat, total	8.0 g	31.8 g	
- saturated	0.6 g	2.3 g	
Carbohydrate	6.0 g	24.1 g	
- sugars	0.2 g	0.9 g	
Sodium	264 mg	g 1050 mg	

Summary & conclusions

- •Generating accurate nutrition labels is challenging, whether by direct analysis or from food composition databases
- •Food composition databases can provide an alternative to direct analysis in most cases
- Database needs to be comprehensive, industry focussed, aligned with regulation
- •Some processes & nutrients unsuited

Contact Details

Australia Boeing House 55 Blackall Street BARTON ACT 2600 Ph: +61 2 6271 2222

Ph: +61 2 6271 2222 Fax: +61 2 6271 2278

PO Box 7186 Canberra BC ACT 2610

Email: info@foodstandards.gov.au Website: www.foodstandards.gov.au

New Zealand Level 6 108 The Terrace WELLINGTON NEW ZEALAND

Ph: +64 4 978 5630 Fax: +64 4 473 9855

PO Box 10559 The Terrace, Wellington 6036 New Zealand info@foodstandards.govt.nz www.foodstandards.govt.nz

8th International Food Data Conference